Approximating catmull-clark subdivision surfaces with bicubic patches
ثبت نشده
چکیده
منابع مشابه
G2 Tensor Product Splines over Extraordinary Vertices
We present a second order smooth filling of an n-valent Catmull-Clark spline ring with n biseptic patches. While an underdetermined biseptic solution to this problem has appeared previously, we make several advances in this paper. Most notably, we cast the problem as a constrained minimization and introduce a novel quadratic energy functional whose absolute minimum of zero is achieved for bicub...
متن کاملExact Evaluation of Catmull-Clark Subdivision Surfaces Near B-Spline Boundaries
In a seminal paper [5], Jos Stam gave a method for evaluating Catmull-Clark subdivision surfaces [1] at parameter values near an interior extraordinary vertex (EV). The basic idea is to subdivide recursively until the (u, v) parameter to be evaluated is contained in a regular 4×4 grid of control points which define a bicubic B-spline patch. The subdivision steps can be computed very efficiently...
متن کاملExact Evaluation Of Catmull-Clark Subdivision Surfaces At Arbitrary Parameter Value
In this paper we disprove the belief widespread within the computer graphics community that Catmull-Clark subdivision surfaces cannot be evaluated directly without explicitly subdividing. We show that the surface and all its derivatives can be evaluated in terms of a set of eigenbasis functions which depend only on the subdivision scheme and we derive analytical expressions for these basis func...
متن کاملPairs of bi-cubic surface constructions supporting polar connectivity
Surface constructions of polynomial degree (3,3) come in four flavours that complement each other: one pair extends the subdivision paradigm, the other the NURBS patch approach to free-form modeling. The first pair, Catmull-Clark (Catmull and Clark, 1978) and Polar subdivision (Karčiauskas and Peters, 2007) generalize bi-cubic subdivision: While Catmull-Clark subdivision is more suitable where ...
متن کاملThe Relationship Between RATS-splines and the Catmull and Clark B-splines
This paper presents the relationship between the Recursive Arbitrary Topology Splines (RATS) method, derived by the authors, and the Catmull and Clark recursive B-Spline method. Both methods are capable of defining surfaces of any arbitrary topology of control points. They "fill-in" n-sided regions with foursided patches. The Catmull & Clark method is derived from the midpoint subdivision of B-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008