Approximating catmull-clark subdivision surfaces with bicubic patches

ثبت نشده
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G2 Tensor Product Splines over Extraordinary Vertices

We present a second order smooth filling of an n-valent Catmull-Clark spline ring with n biseptic patches. While an underdetermined biseptic solution to this problem has appeared previously, we make several advances in this paper. Most notably, we cast the problem as a constrained minimization and introduce a novel quadratic energy functional whose absolute minimum of zero is achieved for bicub...

متن کامل

Exact Evaluation of Catmull-Clark Subdivision Surfaces Near B-Spline Boundaries

In a seminal paper [5], Jos Stam gave a method for evaluating Catmull-Clark subdivision surfaces [1] at parameter values near an interior extraordinary vertex (EV). The basic idea is to subdivide recursively until the (u, v) parameter to be evaluated is contained in a regular 4×4 grid of control points which define a bicubic B-spline patch. The subdivision steps can be computed very efficiently...

متن کامل

Exact Evaluation Of Catmull-Clark Subdivision Surfaces At Arbitrary Parameter Value

In this paper we disprove the belief widespread within the computer graphics community that Catmull-Clark subdivision surfaces cannot be evaluated directly without explicitly subdividing. We show that the surface and all its derivatives can be evaluated in terms of a set of eigenbasis functions which depend only on the subdivision scheme and we derive analytical expressions for these basis func...

متن کامل

Pairs of bi-cubic surface constructions supporting polar connectivity

Surface constructions of polynomial degree (3,3) come in four flavours that complement each other: one pair extends the subdivision paradigm, the other the NURBS patch approach to free-form modeling. The first pair, Catmull-Clark (Catmull and Clark, 1978) and Polar subdivision (Karčiauskas and Peters, 2007) generalize bi-cubic subdivision: While Catmull-Clark subdivision is more suitable where ...

متن کامل

The Relationship Between RATS-splines and the Catmull and Clark B-splines

This paper presents the relationship between the Recursive Arbitrary Topology Splines (RATS) method, derived by the authors, and the Catmull and Clark recursive B-Spline method. Both methods are capable of defining surfaces of any arbitrary topology of control points. They "fill-in" n-sided regions with foursided patches. The Catmull & Clark method is derived from the midpoint subdivision of B-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008